LUX: A Large Underground Xenon detector

WIMP Search

Mani Tripathi

INPAC Meeting
Berkeley, May 5, 2007
New Collaboration

Groups formerly in XENON10:
Case Western, Brown, Livermore Natl. Lab
(major fraction of the US contingent in XENON10)

Groups from ZEPLIN II:
UCLA, Texas A&M, Rochester
(entire US contingent in ZEPLIN-II)

New Entrants:
UCDavis, LBNL
(background in neutrinos/nuclear/HEP)

INPAC is a large fraction of this effort.
Direct Detection Techniques

Ge, CS$_2$, C$_3$F$_8$

DRIFT
IGEX
COUPP

Xe, Ar, Ne

Ionization

Scintillation

Heat - Phonons

NaI, Xe, Ar, Ne

ZEPLIN II, III
XENON
LUX
WARP
ArDM
SIGN

NAIAD
ZEPLIN I
DAMA
XMASS
DEAP
Mini-CLEAN

CRESST II
ROSEBUD
CaWO$_4$, BGO
ZnWO$_4$, Al$_2$O$_3$...

CDMS
EDELWEISS

Xe, Ar, Ne

Ge, Si

Al$_2$O$_3$, LiF

Fig. courtesy H. Sobel

May 5, 2007

Mani Tripathi, INPAC Meeting
Noble Liquids as Target

WIMP flux on earth:
\[\nu \sim \frac{c}{1000}, \]
\[m_c \sim 100 \text{ m}_{\text{proton}} \]
\[\text{flux} \sim 10^5 \text{/(cm}^2 \text{ s)} \]

Scatter on nuclei:
For Xe, useful range is
5 KeV < Recoil Energy < 50 KeV

Scatter coherently from whole nucleus:
\[\sigma = \sigma_{\text{proton}} \mu^2 A^2 \]
(\(\mu = \text{reduced mass}\))
Liquid Xenon has come out with results in 2007

\[\sigma < 6.6 \times 10^{-43} \text{ cm}^2 \]
@ m = 65 GeV

May 5, 2007
Mani Tripathi, INPAC Meeting
Dramatic Improvement in DM Sensitivity

XENON10
April 2007

10 kg fiducial dual phase xenon detector with only 60 days data

DATA listed top to bottom on plot
- Edelweiss, 32 kg-days Ge 2000+2002+2003 limit
- WARP 2.3L, 96.5 kg-days 55 keV threshold
- ZEPLIN II (Jan 2007) result
- CDMS (Soudan) 2004 + 2005 Ge (7 keV threshold)
- XENON10 2007 (Net 136 kg-d)
- XENON10 2007 (Net 136 kg-d, BG Subtract)
- Ruiz de Austri/Trotta/Roszkowski 2006, CMSSM Markov Chain Monte Carlos: 9
- Ellis et. al Theory region post-LEP benchmark points
- Baltz and Gondolo, 2004, Markov Chain Monte Carlos

May 5, 2007 Mani Tripathi, INPAC Meeting
Two Signal Technique

PMT Array
(not all tubes shown)

Time

Secondary
~1 μs width
0–150 μs depending on depth

Primary
~40 ns width

Light Signal
UV ~175 nm photons

Anode
Liq. Surface
Grid

E_{AG} > E_{GC}

Electron Drift
~2 mm/μs

Cathode

Interaction (WIMP or Electron)

~40 ns width

May 5, 2007
May 5, 2007

Mani Tripathi, INPAC Meeting
Xenon Facts

Ionization in liquid:
- About one electron-ion pair /15 eV of deposited energy

175 nm Scintillation:
- About one photon/20 eV of deposited energy

- Ionization/Scintillation ratio changes with interaction type

Ion pairs more likely to recombine in the dense tracks generated by nuclear interactions

- A strong anti-correlation between ionization and scintillation

May 5, 2007
Mani Tripathi
Ionization/Scintillation Response

Nuclear recoil:
Electrons recombine in the liquid due to higher ionization density
- fewer primary electrons

Also overall **quenching** of scintillation relative to electron recoil

Gamma recoil:
Less recombination in the liquid due to lower ionization density
more primary electrons

\[(S_2/S_1)_{\text{wimp}} \ll (S_2/S_1)_{\text{gamma}}\]
Realization of Two Signal Technique

Example from XENON10:

Plot $\log (S2/S1)$ versus total recoil energy.

Neutron recoils: WIMPs would appear here

Electromagnetic recoils
~ 6m diameter Water Cerenkov shield (low cost)

Tall dual phase detector

Aspect ratio = 1.5

100 kg

May 5, 2007
Mani Tripathi, INPAC Meeting
LUX Parameters

• 300 kg Dual Phase liquid Xe TPC with 100 kg fiducial
 – >99% ER background rejection for 50% NR acceptance, E>10 keVr
 3D-imaging TPC eliminates surface activity, defines fiducial

• Backgrounds:
 – Internal: strong self-shielding of PMT activity
 • $\gamma/\beta < 7 \times 10^{-4}$ /keVee/kg/day, from PMTs (Hamamatsu R8778 or R8520).
 • Neutrons (α,n) & fission subdominant
 – External: large water shield with muon veto.
 • Very effective for cavern $\gamma+n$, and HE n from muons
 • Very low gamma backgrounds with readily achievable <10^{-11} g/g purity.

• DM reach: 2×10^{-45} cm2 in 4 months
 – Possible $\sim 5 \times 10^{-46}$ cm2 reach with recent PMT activity reductions, longer running.
Active Water Shield and Veto

Veto on incoming muons via Cherenkov light signal.

Tag thermalized neutrons generated within the detector

- Gd (0.2%) in water gives a capture efficiency of > 90% for thermal neutrons, followed by an 8 MeV gamma cascade

Studies for SuperK have shown compatibility with standard detector materials (Bob Svoboda et al)

May 5, 2007
Mani Tripathi, INPAC Meeting
Lux dark matter goal

Lux - Sensitivity curve at 2×10^{-45} cm2 (100 GeV)

- Exposure: Gross Xe Mass 300 kg
 Limit set with 120 days running x 100 kg fiducial mass x 50% NR acceptance

~1 background event during exposure assuming most conservative assumptions of
ER 7×10^{-4} /keVee/kg/day and 99% ER rejection

- ER bg assumed is dominated by guaranteed Hamamatsu PMT background. Improvements in PMT bg (and rejection power) will extend background free running period, and DM sensitivity

Comparison -- SuperCDMS Goal @ SNOLab: Gross Ge Mass 25 kg
(x 50% fid mass+cut acceptance)
Limit set for 1000 days running x 7 SuperTowers

May 5, 2007 Mani Tripathi, INPAC Meeting
May 5, 2007 Mani Tripathi, INPAC Meeting

Status

Proposal Under review by NSF/DoE.

Meanwhile, **LUXCore**

The collaboration is fully active – Technical VideoCons every Week … Construction activity in full swing at all institutions using Univ resources, startup seed funds etc.

Construction finished late Summer 07 -- operations at Case: Fall 2007.
LUX program: exploit scalability

• LUXcore: Final engineering for large-scale detector
 – Cryostat, >100 kV feedthrough, charge drift, light collection over large distance
 – Full system integration, including ~1m water shield
 – 40 kg narrow “core”, 14 PMTs, 20 cm Ø x 40 cm tall.
• Radial scale-up requires full-funding.

Very good match to early-implementation DUSEL SNOLAB LOI
System scalable to very large mass.

May 5, 2007
Mani Tripathi, INPAC Meeting
Cryostat Being Installed At Case.