The Majorana Collaboration

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov,
Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusey, S. Katulina,
Oleg Kochetov, M. Shirchenko, Yu. Shitov, V. Timkin,
T. Vvolv, E. Yakushev, Yu. Yurkowski

Lawrence Berkeley National Laboratory, Berkeley, California and
the University of California - Berkeley
Yuen-Dat Chan, Mario Cromaz, Brian Fujikawa,
Donna Hurley, Kevin Lesko, Paul Luke, Akbar Mokhtarani,
Alan Poon, Gersende Prior, Nikolai Tolich, Craig Tull

Lawrence Livermore National Laboratory, Livermore, California
Dave Campbell, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico
Steven Elliott, Gerry Garvey, Victor M. Gehman, Vincente
Guiseppe, Andrew Hime, Bill Louis, Geoffrey Mills, Kieth
Rielage, Larry Rodriguez, Richard Schirato, Laura Stonehill,
Richard Van de Water, Hywel White, Jan Wouters

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Cyrus Baktash, Jim Beene, Fred Bertrand, Thomas V. Cianciolo, David
Radford, Krzysztof Rykaczewski, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsuji

Note: Red text indicates students
Neutrinoless Double Beta Decay

• Immediate Implications of Discovery:
 - Neutrino is Majorana (own antiparticle)
 - Total Lepton Number is not conserved
 - Neutrino has mass (known)

• Well-studied example: Exchange of virtual neutrino.

• Could probe absolute Mass-scale of Neutrino:

\[
\left(T_{1/2}^{0\nu} \right)^{-1} = \text{(Matrix Element)} \times \text{(Phase Space)} \times |\langle m_\nu \rangle|
\]

\[
^{Z}A \rightarrow ^{Z+2}A + 2e^{-}
\]
$0\nu\beta\beta$ Decay Sensitivity to $<m_{\beta\beta}>$

$Amp[0\nu\beta\beta] \propto \sum_i m_i U_{ei}^2 \xi_i \equiv <m_{\beta\beta}>$

$0\nu\beta\beta$ limits for: 48Ca, 76Ge, 82Se, 100Mo, 116Cd, 128Te, 130Te, 136Xe, 150Nd

Disfavoured by $0\nu2\beta$

KKDC 76Ge claimed signal

Quasi-Degenerate

Inverted

Normal

90% CL (1 dof)

Experimental Considerations

• Measure **extremely** rare decay rates:
 \[T_{1/2} \sim 10^{26} - 10^{27} \text{ years} \ (\sim 10^{13} \times \text{age of universe!}) \]
• Large, highly efficient source mass.
• Extremely low (near-zero) backgrounds in the \(0\nu\beta\beta\) peak region-of-interest (ROI) (1 count/t-y)

1. High Q value
2. Best possible energy resolution
 - Minimize \(0\nu\beta\beta\) peak ROI to maximize S/B
 - Separate \(2\nu\beta\beta/0\nu\beta\beta\)

![Graph showing 2\nu\beta\beta and 0\nu\beta\beta peaks with 1% resolution]
Experimental Program in $0\nu\beta\beta$ Search

Previous Expts.
~ 1 eV
~ kg scale

Quasi-degenerate
~ 100's meV
100-200 kg
3-5 Expts

If $0\nu\beta\beta$ Observed

Program to study 8-12 $0\nu\beta\beta$
isotopes, using various techniques
100-200 kg scale

Inverted hierarchy
~ 30-40 meV
1 ton scale
at least 2 Expts

Normal hierarchy
~ 5 meV
≥ 10's ton scale
~ 2 Expts?

1980 - Present
2007 - 2014
2013 - 2020
Ge Detection Principle

- Majorana uses 76Ge
- Enriched HPGe Diodes -- Detector is Source.
- Excess at $Q = 2039$ keV
- Demonstrated in IGEX, Heidelberg Moscow.
- Intrinsically clean

HPGe Detectors have excellent energy resolution
- 0.16% at ROI for Majorana
We don’t want to repeat that …

- The Klapdor-Kleingrothaus Result

Best result - 5 76Ge crystals, 10.96 kg of mass, 71 kg-years of data.

$$T_{1/2} = (1.19 +2.99/-0.5) \times 10^{25} \text{ y}$$

$$0.24 < m_\nu < 0.58 \text{ eV (3 \sigma)}$$

Plotted a subset of the data for four of five crystals, 51.4 kg-years of data.

$$T_{1/2} = (1.25 +6.05/-0.57) \times 10^{25} \text{ y}$$

- Much smaller background
- More (efficient) tools to identify and suppress background
- Better systematic handles on data
\[T_{1/2} = \frac{\ln(2) \cdot \varepsilon_{\text{eff}} \cdot \text{atoms} \cdot \text{time}}{\text{decays}} \propto \frac{1}{< m_\nu >^2} \] Limiting case of no obs. decays

\[T_{1/2} > \frac{\ln(2) \cdot \varepsilon_{\text{eff}} \cdot \text{atoms} \cdot \text{time}}{\sqrt{\int B_i(t) \cdot dt}} \]

\[<m_\nu>_\text{of 100 meV} \]

[Rod06]
Background Identification

- Majorana is background limited.
- Goal: 1 event / ton-year in 4 keV ROI
- Backgrounds:
 - Natural isotope chains: 232Th, 235U, 238U, Rn
 - Cosmic Rays:
 - Activation at surface creates 68Ge, 60Co.
 - Hard neutrons from cosmic rays in rock and shield.
 - $2\nu\beta\beta$-decays.
- Need factor ~100 reduction over what has been demonstrated.
- Monte Carlo estimates of acceptable levels
- Most backgrounds are multi-site. Signal is single-site
The Majorana Modular Approach

1 Concept: 57 crystal modules
- Conventional vacuum cryostat made with electroformed Cu.
- Scalable to 1-tonne

Vacuum jacket
Cold Plate
Cold Finger
Crystal
Thermal Shroud
Bottom Closure

Cap
Tube (0.007” wall)
Ge (62mm x 70 mm)
Tray (Plastic, Si, etc)

1 of 19 crystal stacks
Materials and Shielding

- Ultra-radiopure materials
- Deep underground: >5000’
- Modular deployment.
- 40 cm bulk Pb, 10 cm ultra-low background shield
- Active 4π veto detector

Top view

- Veto Shield
- Sliding Monolith
- LN Dewar
- Inner Shield
- 57 Detector Module
Concepts for background suppression

Pulse-shape discrimination

Segmentation

- Pulse-shape discrimination
- Segmentation

0νββ

γ ("High" Energy)

γ ("Low" Energy)

60Co

γ ("High" Energy)

γ ("Low" Energy)
Advanced Concepts in Detector and Data Processing Technologies

• Ge-drift/ modified electrode/ point contact detector
• Highly segmented coaxial HPGe detectors
 – N-type (e.g. GRETA, LLNL Coaxial Imager)
 – P-type (?)

• Low mass/ high resolution FE electronics (FET, preamplifiers)

• Digital acquisition and processing system
 – 1D-3D signal and data processing
Highly Segmented N-Type Detectors

- **Approach**: Highly 2-D segmented n-type HPGe detector with 3D PSA of segments
- **Advantage**:
 - Best background rejection
 - Best event characterization in 3D with interaction separation and gamma-ray reconstruction (w/ accuracy of the size of $0\nu\beta\beta$ event - 1 to 2 mm)
 - Significant R&D effort completed (GRETA, AGATA, LLNL Compton imager)
 - Direct connection to NP projects
- **Drawback**:
 - Slower detector production rate
 - Most additional components (contacts, readout)
 - Most complicated acceptance, characterization, and assembly
 - Requires design modifications (electronics, mechanically)

Suppression by segmentation and 3D PSA

- 60Co suppression w/ 32-fold segmented MSU detector
 - Red: single segment
 - Blue: with PSA

- Measured with 40-fold segmented LLNL detector
- Full 3D event reconstruction and Compton imaging with LLNL detector
- Compton image of 137Cs source
Ge-drift/ modified electrode/ point contact detector

- **Approach**: Non-segmented p-type HPGe detectors employing pulse-shape analysis in modified electrode or Ge-drift configuration

- **Advantage**:
 - High background rejection due to PSA sensitivity
 - Low energy threshold (~300 eV)
 - P-type material for potentially high fabrication rate and low cost
 - Minimum number of readout components
 - Simple configuration in terms of design, production, and operation of cryostat, mounts, readout, and cooling.
 - Easy acceptance, characterization, and assembly.
 - “Thick” outside contact attenuating potential surface α
 - Contamination

- **Drawback**:
 - Only one detector fabricated
 - Production rate, sensitivity to Ge material requirements (e.g. impurity concentration) uncertain.
 - No 3D reconstruction possible
Anticipated background rates

Counts per Region of Interest per Ton-Year

Background rates are comparable!
- Background suppression compensates the increased background level for segmented and more complex implementations.
Majorana R&D
Towards a 1-ton experiment

- Phase I: Construct 30-60 kg R&D Module
- Mixed detectors, enrichment levels
- Goals:
 - Selection of optimal detector design:
 - Highly/modestly segmented
 - Modified electrode
 - Unsegmented p-type
 - Verification of background simulation.
 - Materials, in particular cable and copper shielding.
- Continued cooperation with GERDA collaboration (MaGe, materials, Liquid Ar Shield)
Majorana R&D Module

- Reference Design
 - Based on 60 kg module, containing 57 crystals. A mix of p-type and n-type crystals.
 30-60 kg of 86% enriched ^{76}Ge crystals.
 Some crystals segmented.
 - Scalable, with independent, ultra-clean, electroformed Cu cryostat modules
 - Enclosed in a low-background passive shield and active veto
 - Located deep underground (4500 mwe)

- Background Specification Goal
 in the $0\nu\beta\beta$ peak region of interest (4 keV at 2039 keV)
 • ~ 1 count/ROI/t-y (after analysis cuts)

- Expected Sensitivity to $0\nu\beta\beta$
 (for 60 kg enriched material, running 2 years, or 0.12 t-y of ^{76}Ge exposure)
 - $T_{1/2} = 1.6 \times 10^{26}$ y (90% CL)
 - Sensitivity to $<m> < 190$ meV (90% CL) ([Rod06] RQRPA NME)
 - Able to confirm/refute KKDC 400 meV value (20% measurement).
Schedule

- Submit R&D proposal this summer for demonstration prototype for 1-ton.
- Construction in FY09.
- Collect data FY11. 30-60 kg. of enriched material.
Opportunities for UC

• What does it take to build a 1-ton $0\nu\beta\beta$ 76Ge experiment?
 – Fabrication challenges: Cost & schedule …
 – Do we have the best technology?

• Can we enlarge our vision: 76Ge \leftrightarrow $0\nu\beta\beta$-in general \leftrightarrow fundamental physics
 – Instrumentation as common link?
 – Institute for NPAC Instrumentation? Center of Excellence?
 – Instrumentation technologies
 • Detector
 • Data processing
 – Material processing with emphasis on (radio) purity

• Ties to
 – DUSEL
 – Homeland Security/ Nuclear Nonproliferation
Majorana & GERDA

- 60kg enrGe modules based in electroformed Cu cryostat
- E-formed Cu / Pb passive shielding
- 4π plastic scintillator μ veto

- enrGe array submersed in LAr
- Water cherenkov μ veto
- Phase I: \sim18 kg (H-M/IGEX xtals)
- Phase II: +20 kg segmented xtals

Joint Cooperative Agreement:
Open exchange of knowledge & technologies (e.g. MaGe, R&D)
Intention to merge for larger scale exp.
Select best techniques developed and tested in GERDA and Majorana