The Black Body Radiation

= Chapter 4 of Kittel and Kroemer

The Planck distribution
Derivation

Black Body Radiation
Cosmic Microwave Background
The genius of Max Planck

Other derivations

Stefan Boltzmann law
Flux => Stefan-Boltzmann
Example of application: star diameter

Detailed Balance: Kirchhoff laws

Another example: Phonons in a solid
Examples of applications
Study of Cosmic Microwave Background
Search for Dark Matter
The Planck Distribution

Photons in a cavity

Mode characterized by

<table>
<thead>
<tr>
<th>Frequency v</th>
<th>Angular frequency $\omega = 2\pi v$</th>
</tr>
</thead>
</table>

Number of photons s in a mode \Rightarrow energy $\varepsilon = s\hbar \nu = s\hbar \omega$

Occupation number

$$\langle s \rangle = \frac{1}{\exp \left(\frac{\hbar \omega}{\tau} \right) - 1}$$

Radiation energy density between ω and $\omega + d\omega$?

2 different polarizations

$$u_\omega d\omega = \frac{\hbar \omega^3 d\omega}{\pi^2 c^3 \left(\exp \left(\frac{\hbar \omega}{\tau} \right) - 1 \right)} = u_\nu dv = \frac{8\pi \nu^3 dv}{c^3 \left(\exp \left(\frac{\hbar \nu}{\tau} \right) - 1 \right)}$$
Cosmic Microwave Radiation

Big Bang => very high temperatures!
When $T \approx 3000K$, $p+e$ recombine \Rightarrow H and universe becomes transparent
Redshifted by expansion of the universe: 2.73K
Other derivations

Grand canonical method

\[\langle s \rangle = \langle N \rangle = \frac{\partial (\tau \log Z)}{\partial \mu} = \frac{1}{\exp\left(\frac{\hbar \omega - \mu}{\tau}\right) - 1} \]

What is \(\mu \)?

\(\gamma + e \leftrightarrow e \quad \mu \gamma + \mu_e - \mu_e = 0 \Rightarrow \mu \gamma = 0 \)

Microcanonical method

To compute mean number photons in one mode, consider ensemble of \(N \) oscillators at same temperature and compute total energy \(U \).

We have to compute the multiplicity \(g(n,N) \) of number of states with energy \(U \), number of combinations of \(N \) positive integers such that their sum is \(n \)

\[\frac{1}{\tau} = \frac{\partial \sigma}{\partial U} = \frac{1}{\hbar \omega} \log \left(1 + \frac{N \hbar \omega}{U} \right) = \frac{1}{\hbar \omega} \log \left(1 + \frac{1}{\langle s \rangle} \right) \]

\[\langle s \rangle = \frac{1}{\exp\left(\frac{\hbar \omega}{\tau}\right) - 1} \]
Fluxes

Energy density traveling in a certain direction

So far energy density integrated over solid angle. If we are interested in energy density traveling traveling in a certain direction, isotropy implies

\[u_\omega(\theta, \varphi) d\omega d\Omega = \frac{\hbar \omega^3 d\omega d\Omega}{4\pi^2 c^3 \left(\exp\left(\frac{\hbar \omega}{\tau} \right) - 1 \right)} \]

Note if we use \(\nu \) instead of \(\omega \)

\[u_\nu(\theta, \varphi) d\nu d\Omega = \frac{2h \nu^3 d\nu d\Omega}{c^3 \left(\exp\left(\frac{h \nu}{\tau} \right) - 1 \right)} \]

Flux density in a certain direction=brightness

(Energy /unit time, area, solid angle,frequency) opening is perpendicular to direction

\[I_\nu d\nu dA d\Omega = \frac{1}{dt} d\nu u_\nu c dtdA d\Omega = \frac{2h \nu^3 d\nu dA d\Omega}{c^2 \left(\exp\left(\frac{h \nu}{\tau} \right) - 1 \right)} \]

Flux density through a fixed opening

(Energy /unit time, area,frequency)

\[J_\nu d\nu = \frac{1}{dt} d\nu \int_0^{2\pi} d\varphi \int_0^1 u_\nu c d\vartheta dA \theta d\vartheta = \frac{2\pi h \nu^3 d\nu dA}{c^2 \left(\exp\left(\frac{h \nu}{\tau} \right) - 1 \right)} = \frac{c}{4} u_\nu d\nu dA \]

\(\nu \) energy in cylinder

\(d\nu \) energy in cylinder

\(c\theta \)
Stefan-Boltzmann Law

Total Energy Density

Integrate on ω

\[u = \frac{\pi^2}{15\hbar^3 c^3} \tau^4 = a_B T^4 \]

with \(a_B = \frac{\pi^2 k_B^4}{15\hbar^3 c^3} \)

Total flux through a fixed aperture***

multiply above result by $c/4$

\[J = \frac{\pi^2}{60\hbar^3 c^2} \tau^4 = \sigma_B T^4 \]

with \(\sigma_B = \frac{\pi^2 k_B^4}{60\hbar^3 c^2} = 5.67 \times 10^{-8} \text{ W/m}^2/\text{K}^4 \)

Stefan-Boltzmann constant!
Definition: A body is black if it absorbs all electromagnetic radiation incident on it. Usually true only in a range of frequency.

- e.g. A cavity with a small hole appears black to the outside.

Detailed balance: in thermal equilibrium, power emitted by a system = power received by this system! Otherwise temperature would change!

Consequence: The spectrum of radiation emitted by a black body is the “black body” spectrum calculated before: $u_{BB}(\omega)d\omega = u_{cavity}(\omega)d\omega$

Absorptivity, Emissivity:
- Absorptivity = fraction of radiation absorbed by body
- Emissivity = ratio of emitted spectral density to black body spectral density.

Kirchhoff: Emissivity = Absorptivity $a(\omega) = e(\omega)$
Entropy, Number of photons

Entropy

\[\sigma = \int \sigma_{\omega} d^3x \frac{\omega^2 d\omega}{\pi^2 c^3} \]

\[\sigma_{\omega} = -\sum_s p_s \log p_s \]

Number of photons

\[N_\gamma = \frac{V 2\zeta(3)}{\pi^2 c^3 \hbar^3} \tau^3 = \frac{30\zeta(3)}{\pi^4} \frac{a_B}{k_B} VT^3 \approx 0.37 \frac{a_B}{k_B} VT^3 \]

Proportional

\[\sigma \approx 3.6 N_\gamma \]
Rayleigh-Jeans region (= low frequency)

If $\hbar \omega \ll \tau$ \(\langle \varepsilon_\omega \rangle \approx \tau \)

Power / unit area/solid angle/unit frequency

= Brightness

\(I_v d\nu d\Omega d\omega \approx \tau \frac{\omega^2 d\omega}{\pi^2 c^3} \)

Power emitted / unit (fixed) area

\(J_\omega d\omega = J_v d\nu \approx \tau \frac{\omega^2 d\omega}{4\pi^2 c^2} = \tau \frac{2\pi d\nu}{\lambda^2} \)

\(\frac{dP}{d\nu} = I_v \Omega_e A_e = \frac{2\pi \Omega_e A_e}{\lambda^2} = \frac{2\pi \Omega_r A_r}{\lambda^2} = 2\tau \)

Detected Power (1 polarization)

\(\frac{dP}{d\nu} \) (1 polarization) = \(\tau \)

Antenna temperature

\(T_A = \frac{1}{k_B} \frac{dP}{d\nu} \) (1 polarization)

\(A_e = \Omega_r d^2 \)

\(\Omega_e = \frac{A_r}{d^2} \)

If diffraction limited:

\(\Omega_r A_r = \lambda^2 \)
Applications

Many!

e.g. Star angular diameter

Approximately black body and spherical!
- Spectroscopy \Rightarrow Effective temperature
- Apparent luminosity $l = $ power received per unit area

$$l = \frac{L \Omega_e}{4\pi} \frac{1}{A_r} = \frac{L}{4\pi d^2}$$

But power output

$$L = 4\pi r^2 \sigma B T_{\text{eff}}^4$$

$$\Rightarrow l = \frac{r^2}{d^2} \sigma B T_{\text{eff}}^4$$

Angular diameter

$$\text{angular diameter} = \frac{r_\perp}{d} = \sqrt{\frac{l}{\sigma B T_{\text{eff}}^4}}$$

\Rightarrow Baade-Wesserlink distance measurements of varying stars
- Oscillating stars (Cepheids, RR Lyrae)
- Supernova
 - assuming spherical expansion
Phonons in a solid

Phonons:
Quantized vibration of a crystal described in same way as photons
If s phonons in a mode
Same as for photons but 3 modes
Maximum energy (minimum wavelength/finite # degrees of freedom)

\[\varepsilon = \hbar \omega \quad p = \hbar k = \frac{\hbar \omega}{c_s} \quad \varepsilon_s = s\hbar \omega \]

\[\langle s \rangle = \frac{1}{\exp\left(\frac{\hbar \omega}{\tau}\right) - 1} \]

Debye approximation:

- isotropic
- \[k = \frac{\omega}{c_s} \quad \text{or} \quad p = \frac{\varepsilon}{c_s} \]

Introducing the Debye temperature \(T_D = \theta = \frac{\hbar c_s}{k_B} \left(6\pi^2 \frac{N}{V} \right)^{1/3} = \frac{\hbar \omega_D}{k_B} \)

\[U = \frac{3}{5} \pi^4 k_B N \frac{T^4}{T_D^3} \]
\[C_V = \frac{12}{5} \pi^4 k_B N \left(\frac{T}{T_D} \right)^3 \]
\[\sigma = \frac{12}{15} \pi^4 k_B N \left(\frac{T}{T_D} \right)^3 \]
Applications

Calorimetry: Measure energy deposition by temperature rise

\[\Delta T = \frac{\Delta E}{C} \Rightarrow \text{need small } C \]

Bolometry: Measure energy flux \(F \) by temperature rise

Chopping e.g., between sky and calibration load

\[\Delta T = \frac{\Delta F}{G} \Rightarrow \text{need small } G \text{ but time constant } \frac{C}{G} \text{ limited by stability } \Rightarrow \text{small heat capacity } C \]

Very sensitive!

Heat capacity goes to zero at low temperature \(C \approx T^3 \)

Study of cosmic microwave background
Search for dark matter particles