2 States of a System

Mostly chap 1 of Kittel & Kroemer

2.1 States / Configurations

2.2 Probabilities of States
 • Fundamental assumptions
 • Entropy

2.3 Counting States

2.4 Entropy of an ideal gas
System States, Configurations

Microscopic: each degree of freedom
Classical \(q_i, p_i = \frac{\partial L}{\partial \dot{q}_i} \)
Quantum state # \(\frac{\partial L}{\partial \dot{q}_i} \)

Statistical Mechanics \(f(q_i, p_i) \)
Moments \(\langle q_i \rangle, \langle p_i \rangle \)

Thermodynamics
Macroscopic Variables

State

State = Quantum State
Well defined, unique
Discrete ≠ “classical thermodynamics” where entropy was depending on resolution \(\Delta E \)

Configuration = Macroscopic specification of system

Macroscopic Variables
Extensive: \(U, S, F, H, V, N \)
Intensive: \(T, P, \mu \)

Not unique: depends of level of details needed
Variables+ constraints => not independent
Implicitly assumes at least local equilibrium => intensive variables are well defined

\[
U = \sum_{i=1}^{n} U_i \\
T = \frac{2}{3k_B} \frac{1}{N} \sum_{i=1}^{n} U_i
\]
Fundamental postulates
State of one particle is characterized by a wave function

Probability distribution \(|\psi(x)|^2 \) with \(\langle \psi | \psi \rangle \equiv \int \overline{\psi}(x) \psi(x) \, dx = 1 \)

Physical quantity \(\leftrightarrow \) hermitian operator.

In general, not fixed outcome! Expected value of \(O = \langle \psi | O | \psi \rangle \equiv \int \overline{\psi}(x) O \psi(x) \, dx \)

Eigenstate \(\equiv \) state with a fixed outcome e.g., \(O | \psi \rangle = o | \psi \rangle \) where \(o \) is a number.

\[
i \frac{\partial}{\partial t} = \frac{E}{\hbar} \quad \rightarrow \quad E = \frac{p^2}{2M} \Rightarrow -\left(\frac{\hbar^2}{2M} \right) \nabla^2 \Psi = i\hbar \frac{\partial}{\partial t} \Psi \quad \text{Eigenvalues of energy } \varepsilon: \quad -\left(\frac{\hbar^2}{2M} \right) \nabla^2 \Psi = \varepsilon \Psi
\]

\(\rightarrow \) A finite system has discrete eigenvalues
Quantum States

Prototypes:

- Atomic levels
 - Have to take into account multiplicity if we consider degenerate states (i.e. have the same energy)

- Spin s in general $2s+1$ states (exception photons $s=1$ but 2 states)
 - Spin $\frac{1}{2}$ $s=\pm\frac{1}{2}$
 - If magnetic field oriented along +/- direction, the energy $= -/+mB$ ($m=$magnetic moment)
 - Note: Idea of an isolated system of spins is somewhat strange <= transition between higher and lower energy states. Isolated = electromagnetic emission reabsorbed or reflected back

- Ideal gas of particles
 - Free particle propagating in space: orbital $\psi(x)$ (motion part of the wave function)
 - Single particle in a box: Cubic side L cf. K&K p.72

 $$
 \Psi(x, y, z) = A \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right) \sin\left(\frac{n_z \pi z}{L}\right)
 $$

 - n_x, n_y, n_z integers > 0

 $$
 \varepsilon_{n_x, n_y, n_z} = \left(\frac{\hbar^2}{2M}\right) \left(\frac{\pi}{L}\right)^2 \left(n_x^2 + n_y^2 + n_z^2\right)
 $$

 - Ideal (\approx non interacting): orbitals not distorted by presence of N particles. Wave function = product of single wave functions. Can bounce against each other provided interactions are short!
Fundamental Postulates

Probabilistic description of state of a system

Because of microscopic processes, the system experiences slight fluctuations: described by probability of being in state i.

Equilibrium = No net Flux => Stationary No evolution of probability distribution with time

Isolated = closed :

No energy/particle exchange with outside

volume constraint OK

An isolated system in equilibrium is equally likely to be in any of its accessible states

Notes:

- Kittel does not specify "in equilibrium" does not matter in case where we are close to equilibrium
- "Accessible" e.g. Conservation of energy Some states may not be accessible within time scale of experiment
Remarks

Probabilistic description of state of a system

Two possible definitions:

- Observations of different identical systems at a given time "ensemble" of systems j
- Observations at different times, system wanders over its accessible states

Ergodicity: under very general conditions, we obtain identical results

$$\langle y \rangle_{\text{ensembles}} = \langle y \rangle_{\text{time}} = \lim_{T \to \infty} \frac{1}{T} \int_0^T y(t) dt$$

The fundamental postulate can be demonstrated in Quantum Mechanics

Related, as Boltzmann already knew, to the symmetry of transition probabilities

Probability of transition per unit time state $r \rightarrow$ state $s = \text{Prob of transition state } s \rightarrow \text{state } r$

$$\Gamma_{rs} = \Gamma_{sr}$$

Celebrated H theorem (demonstration later in course)

valid if no persistence of quantum coherence (generally true)

Quantum mechanics is compatible with statistical mechanics!
H theorem: an intuitive look

Based on the fact that probability of transition per unit time from \(r \) to \(s \) is equal to probability of transition per unit time from \(s \) to \(r \)

\[
\Gamma_{rs} = \Gamma_{sr}
\]

Suppose I have initially \(N_r \) particles in \(r \) and \(N_s << N_r \) in \(r \), the number of particles going from \(r \) to \(s \) in time \(\Delta t \) is much bigger than from \(s \) to \(r \).

\[
N_r \Gamma_{rs} \Delta t >> N_s \Gamma_{sr} \Delta t
\]

Therefore \(N_r \) decreases and \(N_s \) increases, till they are in average equal. The probabilities of \(s \) and \(r \) are then equal!
Consequences

Probability of a configuration (isolated, in equilibrium)

If we call \(g \) the number of states for a given macroscopic specification of the configuration, and \(g_t \) the total number of states accessible to the system

\[
\text{Prob}(\text{configuration}) = \frac{g}{g_t}
\]

Entropy

Definition

\[
\sigma = - \sum_{\text{states } s} p_s \log p_s = -H
\]

\(H = \text{"Negentropy" = "Information" of Shannon} \)

\(\neq \) Kittel (ours is more general)

\[
\sigma = \log(g_t)
\]

For an isolated system in equilibrium: identical to Kittel

\[
\sum_s p_s = 1 + \text{equi probable } \Rightarrow p_s = \frac{1}{g_t}
\]

where \(g_t \) is the total number of accessible quantum states in the configuration

Notes:

- In classical thermodynamics, definition usually used

\[
S = k_B \sigma = \int \frac{dQ}{T} \quad \Leftrightarrow \quad \sigma = \int \frac{dQ}{k_B T} = \int \frac{dQ}{\tau} \quad \text{with } \tau = k_B T \quad k_B = 1.38 \cdot 10^{-23} \text{ J} / \text{K}
\]

where \(k_B \) is the Boltzmann constant

- Entropy requires the use of quantum mechanics: we will see that for an ideal gas

\[
S = \int_0^\tau \frac{dQ}{T} = k_B N \left[\log \frac{n_Q}{n} + \frac{5}{2} \right] \quad \text{(monoatomic, spinless)}
\]

\[
n_Q = \left(\frac{M k_B T}{2 \pi \hbar^2} \right)^{\frac{3}{2}}
\]
Counting States: Discrete States

Preliminaries

Number of permutations between N objects = factorial

\[N! = N(N-1)(N-2) \ldots 2 \times 1 = \Gamma(N+1) \]

Stirling approximation

\[\log N! \approx N \log N - N + \frac{1}{2} \log(2\pi N) \quad \text{as} \quad N \to \infty \]

Independent spins 1/2

N spins, each of them has two states (up, down)

If we define a configuration by the number of spins up, the number of states in the configuration

\[g(n_{up}, n_{down}) = \frac{N(N-1) \ldots (N-n_{up}+1)}{n_{up}! (N-n_{up})!} = \frac{N!}{n_{up}! n_{down}!} \quad \text{with} \quad n_{down} = N - n_{up} \]

We could have instead chosen to label the configuration by the difference (proportional to total total spin): suppose N is even

\[2s = n_{up} - n_{down} \Rightarrow n_{up} = N/2 + s \quad n_{down} = N/2 - s \]

\[g(s) = \frac{N!}{(N/2+s)! (N/2-s)!} \to 2^N \frac{1}{\sqrt{2\pi N/4}} \exp \left(-\frac{1}{2} \frac{s^2}{N/4} \right) \]

Gaussian!
Counting States: Particles

Density of orbitals per unit phase space

Phase space element for a single particle in 3 dimensions: \(d^3x \cdot d^3p \)

Theorem: the density of orbitals per unit phase space for a single particle in 3 dimensions is \(1/h^3 \) = density of quantum states for a spinless particle

Proof: Not in book!

Consider a particle in a box. Its spatial wave function is

\[
\Psi(x,y,z) = A \sin \left(\frac{n_x \pi x}{L} \right) \sin \left(\frac{n_y \pi y}{L} \right) \sin \left(\frac{n_z \pi z}{L} \right) \quad \text{with } n_x, n_y, n_z \text{ integers > 0}
\]

In the \(x \) direction, this corresponds to the superposition of 2 momenta
\[
\frac{n_x \pi \hbar}{L} \quad \text{and} \quad -\frac{n_x \pi \hbar}{L}
\]

Let us start with \(n_x = 1 \). The \(x \) momentum span is by

\[
\Delta p_x = \frac{\pi \hbar}{L} - \frac{\pi \hbar}{L} = 2 \frac{\pi \hbar}{L}
\]

The \(x \) component of the phase space volume is therefore

\[
\Delta x \Delta p_x = L \times 2 \frac{\pi \hbar}{L} = \hbar
\]

In 3 dimensions the phase space volume occupied by the state \(n_x = 1, n_y = 1, n_z = 1 \) is \(h^3 \)

Increasing \(n_x \) by 1 will add one more state and increase the phase space volume by \(h^3 \) and so on. Therefore the number of states per unit phase space is \(\frac{1}{h^3} \)

This is a totally general and exact result: \(1/h \) for each of the dimensions!
Counting States: Particles

Proof à la Kittel

Not explicitly in book but many such types of calculation throughout.

Consider again a particle in a cubic box, and compute number of states between E and $E + dE = \text{number of integers } n_x, n_y, n_z$ such that

$$E \leq \left(\frac{\hbar^2}{2M} \right) \left(\frac{\pi}{L} \right)^2 (n_x^2 + n_y^2 + n_z^2) < E + dE$$

In the n_x, n_y, n_z space, each state correspond to a volume of unity.

For n_x, n_y, n_z large enough, the number of states is given by the volume of one quadrant of spherical shell of radius $L \sqrt{\frac{2M}{E}}$ and thickness $dn = \frac{L \sqrt{\frac{2M}{E}}}{2\pi\hbar} dE$.

The number of states is given by

$$\# \text{ of states} = \frac{1}{8} 4\pi n^2 dn = 2\pi \frac{L^3 (2M)^{3/2} \sqrt{E}}{8\pi^3 \hbar^3} dE$$

Continuous approximation

Volume of phase space element such that the energy is between E and $E + dE$ is

$$L^3 4\pi p^2 dp \quad \text{with} \quad E = \frac{p^2}{2M} = \pi \frac{2L^3 (2M)^{3/2}}{8\pi^3 \hbar^3} \sqrt{E} dE$$

$$\Rightarrow \frac{\# \text{ States}}{\text{Phase space volume}} = \frac{1}{8\pi^3 \hbar^3} = \frac{1}{\hbar^3}$$

Calculation done once for all!
Ideal Gas

Now consider N particles in weak interactions

Calculation of number of states as a function of U

N particles
Weak interactions ⇒ # states =

with the constraint that total energy is \(U \)

Space integral

\[
\Pi \int d^3 x_i = V^N
\]

Momentum integral: we need to conserve energy

1 particle in 1 dimension: only 1 momentum state with right energy in 2 dimensions circumference of circle

\[
\sqrt{p_1^2 + p_2^2} = \sqrt{2MU} \quad \Rightarrow \quad \int \delta \left(\sqrt{p_1^2 + p_2^2} - \sqrt{2MU} \right) d^2 p_i = 2\pi \sqrt{2MU}
\]

in 3 dimensions area of 2-sphere

\[
\sqrt{p_1^2 + p_2^2 + p_3^2} = \sqrt{2MU} \quad \Rightarrow \quad \int \delta \left(\sqrt{p_1^2 + p_2^2 + p_3^2} - \sqrt{2MU} \right) d^3 p_i = 4\pi \left(\sqrt{2MU} \right)^2
\]

N particles with 3 momentum components area of (3N-1)-sphere \(\leq 3 \times N \) dimensions in total

\[
\delta \left(\sqrt{\sum_{part} \sum_{i=1}^{3} p_{ij}^2} - \sqrt{2MU} \right) \prod_{part} d^3 p_i \propto U^{3N-1}/2
\]

for large N \(g \propto V^N U^{3N/2} \)

\[\sigma = \text{Const} + N \log V + 3/2N \log U \]
Ideal Gas

2 technical notes (optional)

1) Exact formula: It can be shown that the surface area of sphere of radius \(r \) is:

\[r^{3N-1} \Omega_{3N} \]

where the solid angle factor is

\[\Omega_{3N} = \frac{(2\pi)^{3N-1}}{2} \frac{2}{3(N-1)!} \]

with

\[\left(\frac{m}{2} \right)! = \left(\frac{m}{2} \right)\left(\frac{m}{2} - 1 \right) \ldots \left(\frac{1}{2} \right) \]

2) If you follow carefully the dimensions, we need a factor \(h/L \)

\[g = \int \frac{h}{L} \delta \left(\sqrt{ \sum_{\text{part } i} \sum_{j=1}^{3} p_{ij}^2 } - \sqrt{2MU} \right) \prod_i \frac{d^3 x_i d^3 p_i}{h^3} = \frac{V^{N-1/3} (2MU)^{3N-1} \Omega_{3N}}{h^{3N-1}} \]

⇒ We can compute (painfully) the number of states and then get probabilities: “Microcanonical” methods
Sackur Tetrode Formula

We are now in position to compute the entropy

$$\sigma = \log g = \log \left[\frac{V^{N-1/3} \left(2MU \right)^{3N-1}}{h^{3N-1}} \right]$$

Only problem: violently disagrees with experiment!

Solution: In quantum mechanics, particles are indistinguishable

We have over-counted the number of particles by $N!$ (Gibbs)

Sackur Tetrode

We then compute

$$g = \frac{1}{N!} \left(\frac{h}{L} \right) \delta \left(p - \sqrt{2MU} \right) \prod_i \frac{d^3x_i d^3p_i}{h^3} = \frac{V^{N-1/3} \left(2MU \right)^{3N-1}}{N! h^{3N-1}} \Omega_{3N}$$

For large N we can use the Stirling approximation both for integer and half integer

$$\log \left(\frac{m}{2} \right) \approx \frac{m}{2} \log \left(\frac{m}{2} \right) - \frac{m}{2}$$

and we get

$$\sigma(U,V,N) = N \log \left[\left(\frac{2\pi M 2U}{h^2 3N} \right)^{3/2} \right] + N \left(\log \frac{V}{N} + 5/2 \right)$$

Writing $n = \frac{N}{V}, n_Q = \left(\frac{2\pi M 2U}{h^2 3N} \right)^{3/2}$ we get

$$\frac{\sigma}{k_B} = N \left[\log \left(\frac{n_Q}{n} \right) + \frac{5}{2} \right]$$