2 States of a System

Mostly chap 1 of Kittel & Kroemer

2.1 States / Configurations

2.2 Probabilities of States
 • Fundamental assumptions
 • Entropy

2.3 Counting States

2.4 Entropy of an ideal gas
System States, Configurations

Microscopic:
each degree of freedom
Classical \(q_i, p_i = \frac{\partial L}{\partial \dot{q}_i} \)
Quantum state # \(f(q_i, p_i) \)

Statistical Mechanics \(f(q_i, p_i) \)
Moments \(\langle q_i \rangle, \langle p_i \rangle \)

Thermodynamics
Macroscopic Variables

State

State = Quantum State
Well defined, unique
Discrete ≠ “classical thermodynamics” where entropy was depending on resolution \(\Delta E \)

Configuration = Macroscopic specification of system

Macroscopic Variables
Extensive: \(U, S, F, H, V, N \)

Intensive: \(T, P, \mu \)

Not unique: depends on level of details needed
Variables + constraints \(\Rightarrow \) not independent

\[
\sum_{i=1}^{n} U_i = \frac{2}{3k_B N} \sum_{i=1}^{n} U_i
\]

\(T = \frac{1}{3k_B N} \sum_{i=1}^{n} U_i \)
Quantum Mechanics in 1 transparency

Fundamental postulates
State of one particle is characterized by a wave function

Probability distribution $= \psi(x)^2$ with $\langle \psi | \psi \rangle \equiv \int \bar{\psi}(x)\psi(x)dx = 1$

Physical quantity \leftrightarrow hermitian operator.

In general, not fixed outcome! Expected value of $O = \langle \psi | O | \psi \rangle \equiv \int \bar{\psi}(x)O\psi(x)dx$

Eigenstate \equiv state with a fixed outcome e.g., $O | \psi \rangle = o | \psi \rangle$ where o is a number.

\[i \frac{\partial}{\partial t} = \frac{E}{\hbar} \quad -i \frac{\partial}{\partial x_j} = \frac{p_j}{\hbar} \leftrightarrow "State" \text{ of well defined momentum} \]

\[\varphi(x,t) = \left(\frac{1}{2\pi\hbar^2} \right)^{3/2} e^{-i\left(\frac{Et-p \cdot \vec{x}}{\hbar} \right)} \]

\[E = \frac{p^2}{2M} \Rightarrow -\left(\frac{\hbar^2}{2M} \right) \nabla^2 \Psi = i\hbar \frac{\partial}{\partial t} \Psi \quad \text{Eigenvalues of energy } \varepsilon : -\left(\frac{\hbar^2}{2M} \right) \nabla^2 \Psi = \varepsilon \Psi \]

\Rightarrow A finite system has discrete eigenvalues
Quantum States

Prototypes:

- **n=2**
 - Atomic levels
 - Have to take into account multiplicity if we consider degenerate states (i.e. have the same energy)

- **n=1**
 - Spin s in general $2s+1$ states (exception photons $s=1$ but 2 states)
 - Spin 1/2 $s=\pm 1/2$
 - If magnetic field oriented along +/- direction, the energy $= -/+mB$ (m=magnetic moment)
 - Note: Idea of an isolated system of spins is somewhat strange <= transition between higher and lower energy states. Isolated = electromagnetic emission reabsorbed or reflected back

- Ideal gas of particles
 - Free particle propagating in space: orbital $\psi(x)$ (motion part of the wave function)
 - Single particle in a box: Cubic side L cf. K&K p.72

 $\Psi(x,y,z) = A \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right) \sin\left(\frac{n_z \pi z}{L}\right)$

 - n_x, n_y, n_z integers > 0

 $\varepsilon_{n_x,n_y,n_z} = \left(\frac{\hbar^2}{2M}\right) \left(\frac{\pi}{L}\right)^2 \left(n_x^2 + n_y^2 + n_z^2\right)$

 Ideal (\approx non interacting): orbitals not distorted by presence of N particles. Wave function = product of single wave functions. Can bounce against each other provided interactions are short!
Fundamental Postulate

Probabilistic description of state of a system

Because of microscopic processes, the system experiences slight fluctuations: described by probability of being in state i.

Equilibrium = No net Flux => Stationary No evolution of probability distribution with time

Isolated = closed :

No energy/particle exchange with outside volume constraint OK

An isolated system in equilibrium is equally likely to be in any of its accessible states

Notes:

- Kittel does not specify "in equilibrium" does not matter in case where we are close to equilibrium
- "Accessible" e.g. Conservation of energy +Some states may not be accessible within time scale of experiment
Remarks

Probabilistic description of state of a system

Two possible definitions:

- Observations of different identical systems at a given time "ensemble" of systems j
- Observations at different times, system wanders over its accessible states

Ergodicity: under very general conditions, we obtain identical results

\[<y>_{\text{ensembles}} = <y>_{\text{time}} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} y(t) dt \]

The fundamental postulate can be demonstrated in Quantum Mechanics

Related, as Boltzmann already knew, to the symmetry of transition probabilities

Probability of transition per unit time state \(r \rightarrow s \) = Prob of transition state \(s \rightarrow r \)

\[\Gamma_{rs} = \Gamma_{sr} \]

Celebrated H theorem (demonstration in slide 8 Optional)
valid if no persistence of quantum coherence (generally true)
H theorem: an intuitive look

Based on the fact that probability of transition per unit time from \(r \) to \(s \) is equal to probability of transition per unit time from \(s \) to \(r \)

\[\Gamma_{rs} = \Gamma_{sr} \]

Suppose we have initially \(N_r \) particles in \(r \) and \(N_s \ll N_r \) in \(r \), the number of particles going from \(r \) to \(s \) in time \(\Delta t \) is much bigger than from \(s \) to \(r \).

\[N_r \Gamma_{rs} \Delta t \gg N_s \Gamma_{sr} \Delta t \]

Therefore \(N_r \) decreases and \(N_s \) increases, till they are in average equal. The probabilities of \(s \) and \(r \) are then equal!
H theorem (Optional)

Modern Version: see Reif A12

Consider an isolated system, and quantum states s. The probabilities of occupancy p_s are such that $\sum p_s = 1$

Quantum mechanics: Probabilities per unit time of transition between states r and s are symmetric

$$\Gamma_{rs} = \Gamma_{sr} \propto \langle s | W | r \rangle^2$$

Starting from the detailed balance argument

$$\frac{dp_r}{dt} = \sum_s p_s \Gamma_{sr} - \sum_s p_r \Gamma_{rs} = \sum_s \Gamma_{sr} (p_s - p_r)$$

Consider now

$$H \equiv \sum_s p_s \log(p_s) = -\sigma$$

We have

$$\frac{dH}{dt} = \sum_r \frac{dp_r}{dt} (\log(p_r) + 1) = \sum_r \sum_s \Gamma_{sr} (p_s - p_r) (\log(p_r) + 1)$$

or equally well

$$\frac{dH}{dt} = \sum_s \sum_r \Gamma_{rs} (p_r - p_s) (\log(p_s) + 1) = -\sum_r \sum_s \Gamma_{sr} (p_s - p_r) (\log(p_s) + 1)$$

Add the two quantities

$$\frac{dH}{dt} = -\frac{1}{2} \sum_r \sum_s \Gamma_{sr} (p_s - p_r) (\log(p_s) - \log(p_r))$$

If $p_s > p_r$, $\log(p_r) > \log(p_s)$ and vice versa $\Gamma_{sr} > 0 \implies \frac{dH}{dt} \leq 0$ $\frac{dS}{dt} \geq 0$

Equality holds if $p_s = p_r$: \implies at equilibrium quantum states have equal probabilities!
Consequences

Probability of a configuration (isolated, in equilibrium)

If we call \(g \) the number of states for a given macroscopic specification of the configuration, and \(g_t \) the total number of states accessible to the system

\[
\text{Prob}(\text{configuration}) = \frac{\text{Number of states in configuration}}{\text{Total number of states}} = \frac{g}{g_t}
\]

Entropy

Definition

\[
\sigma = - \sum_{\text{states } s} p_s \log p_s = -H
\]

\(H = \text{"Negentropy"} = \text{"Information"} \) of Shannon

\(\neq \) Kittel (ours is more general)

For an isolated system in equilibrium: identical to Kittel

\[
\sum_s p_s = 1 \quad \text{equiprobable} \quad \Rightarrow \quad p_s = \frac{1}{g_t}
\]

where \(g_t \) is the total number of accessible quantum states in the configuration

Notes:

\(\cdot \) In classical thermodynamics, definition usually used

\[
S = k_B \sigma = \int \frac{dQ}{T} \quad \Leftrightarrow \quad \sigma = \int \frac{dQ}{k_B T} = \int \frac{dQ}{\tau} \quad \text{with} \quad \tau = k_B T \quad k_B = 1.38 \cdot 10^{-23} J / K
\]

where \(k_B \) is the Boltzmann constant

Entropy requires the use of quantum mechanics: we will see that for an ideal gas

\[
S = \int_0^\tau \frac{dQ}{T} = k_B N \left[\log \frac{n_Q}{n} + \frac{5}{2} \right] \quad (\text{monoatomic, spinless}) \quad n_Q = \left(\frac{M k_B T}{2 \pi \hbar^2} \right)^{\frac{3}{2}}
\]
Counting States: Discrete States

Preliminaries

Number of permutations between N objects = factorial

\[N! = N(N-1)(N-2)\ldots2.1 = \Gamma(N+1) \]

Stirling approximation

\[\log N! \approx N \log N - N + \frac{1}{2} \log(2\pi N) \]

Independent spins 1/2

N spins, each of them has two states (up, down)

If we define a configuration by the number of spins up, the number of states in the configuration

\[g(n_{\text{up}}, n_{\text{down}}) = \frac{N(N-1)\ldots(N-n_{\text{up}}+1)}{n_{\text{up}}!} = \frac{N!}{n_{\text{up}}!n_{\text{down}}!} \]

We do not care about order!

\[2s = n_{\text{up}} - n_{\text{down}} \Rightarrow n_{\text{up}} = N/2 + s, \quad n_{\text{down}} = N/2 - s \]

We could have instead chosen to label the configuration by the difference (proportional to total total spin): suppose N is even

\[g(s) = \left(\frac{N}{2} + s \right)! \left(\frac{N}{2} - s \right)! \rightarrow 2^N \frac{1}{\sqrt{2\pi N/4}} \exp \left(-\frac{1}{2} \frac{s^2}{N/4} \right) \]

Gaussian!
Counting States: Particles

Density of spatial states per unit phase space

Phase space element for a single particle in 3 dimensions: \(d^3x \cdot d^3p \)

Theorem: the density of spatial states (orbitals) per unit phase space for a single particle in 3 dimensions is \(\frac{1}{h^3} \) = density of quantum states for a spinless particle

Proof: Not in book!
Consider a particle in a box. Its spatial wave function is
\[
\Psi(x,y,z) = A \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right) \sin\left(\frac{n_z \pi z}{L}\right)
\]
with \(n_x, n_y, n_z \) integers > 0

\[
\sin\left(\frac{n_x \pi x}{L}\right) = e^{\frac{n_x \pi x}{L}} - e^{-\frac{n_x \pi x}{L}}
\]

Applying \(\tilde{p} = -i\hbar \nabla \) one sees this is the superposition of 2 momenta

Consider the x direction,
\[
\Delta p_x = \frac{\pi \hbar}{L} - \frac{-\pi \hbar}{L} = 2\frac{\pi \hbar}{L}
\]

Let us start with \(n_x = 1 \). The x momentum span is by
\[
\Delta x \Delta p_x = L \times 2 \frac{\pi \hbar}{L} = h
\]

\(n_x = 1, n_y = 1, n_z = 1 \) is \(h^3 \)

The x component of the phase space volume is therefore

In 3 dimensions the phase space volume occupied by the state
\[
\frac{1}{h^3}
\]
Counting States: Particles

Proof à la Kittel

Not explicitly in book but many such types of calculation through out

Consider again a particle in a cubic box, and compute number of states between E and $E+dE$ = number of integers n_x, n_y, n_z such that

$$E \leq \left(\frac{\hbar^2}{2M} \right) \left(\frac{\pi}{L} \right)^2 \left(n_x^2 + n_y^2 + n_z^2 \right) < E + dE$$

In the n_x, n_y, n_z space, each state correspond to a volume of unity

For n_x, n_y, n_z large enough, the number of states is given by the volume of one quadrant of spherical shell of radius

$$n = \sqrt{n_x^2 + n_y^2 + n_z^2} = \frac{L \sqrt{2ME}}{\pi \hbar}$$

and thickness $dn = \frac{L \sqrt{2M}}{2\pi \hbar} dE$

$$\# \text{ of states} = \frac{1}{8} 4\pi n^2 \, dn = 2\pi \frac{L^3 (2M)^{3/2} \sqrt{E}}{8\pi^3 \hbar^3} \, dE$$

Volume of phase space element such that the energy is between E and $E+dE$ is

$$L^3 4\pi p^2 \, dp \quad \text{with} \quad E = \frac{p^2}{2M} \quad \text{is} \quad \pi 2L^3 (2M)^{3/2} \sqrt{EdE}$$

$$\Rightarrow \quad \frac{\# \text{ States}}{\text{Phase space volume}} = \frac{1}{8\pi^3 \hbar^3} = \frac{1}{h^3}$$
Now consider N particles in weak interactions

Calculation of number of states as a function of U

\[g = \prod_i \int \frac{d^3 x_i d^3 p_i}{h^3} \]

with the constraint that total energy is \(U \)

\[\sum_{\text{part i}} \sum_{j=1}^{3N} \frac{p_{ij}^2}{2M} = U \]

where \(M \) is the mass

Space integral

\[\prod_i \int d^3 x_i = V^N \]

Momentum integral: we need to conserve energy

1 particle in 1 dimension: only 1 momentum state with right energy

in 2 dimensions: circumference of circle

\[\sqrt{p_1^2 + p_2^2} = \sqrt{2MU} \Rightarrow \int \delta \left(\sqrt{p_1^2 + p_2^2} - \sqrt{2MU} \right) d^2 p_i = 2\pi \sqrt{2MU} \]

in 3 dimensions: area of 2-sphere

\[\sqrt{p_1^2 + p_2^2 + p_3^2} = \sqrt{2MU} \Rightarrow \int \delta \left(\sqrt{p_1^2 + p_2^2 + p_3^2} - \sqrt{2MU} \right) d^3 p_i = 4\pi (\sqrt{2MU})^2 \]

N particles with 3 momentum components: area of (3N-1)-sphere \(\leq 3 \times N \) dimensions in total

\[\delta \left(\sqrt{\sum_{\text{part i}} \sum_{j=1}^{3N} p_{ij}^2} - \sqrt{2MU} \right) \prod_{\text{part}} d^3 p_i \propto U^{\frac{3N-1}{2}} \]

for large \(N \)

\[g \propto V^N U^2 \sigma = k(N) + N \log V + 3 / 2N \log U \]

function of \(N \) (see page 15)
Ideal Gas

2 technical notes (optional)

1) Exact formula: It can be shown that the surface area of 3N-1 sphere of radius r is:

$$r^{3N-1} \Omega_{3N}$$

where the solid angle factor is

$$\Omega_{3N} = \frac{2(\pi)^{3N/2}}{\Gamma\left(\frac{3N}{2}\right)} = \frac{2(\pi)^{3N/2}}{\left(\frac{3}{2}N - 1\right)!}$$

with

$$\left(\frac{m}{2}\right)! = \left(\frac{m}{2}\right)\left(\frac{m}{2} - 1\right)\ldots\left(\frac{m}{2} - \frac{m}{2}\right)\pi^{1/2} \text{ m odd}$$

$$\left(\frac{m}{2}\right)! = \left(\frac{m}{2}\right)\left(\frac{m}{2} - 1\right)\ldots\left(\frac{1}{2}\right)\pi^{1/2} \text{ m even}$$

2) If you follow carefully the dimensions, we need a factor h/L

$$g = \int \frac{h}{L} \delta\left(\sqrt{\sum_{\text{part}} \sum_{i=1}^{3} p_{ij}^2} - \sqrt{2MU}\right) \prod_{i} \frac{d^3x_i d^3p_i}{h^3} = \frac{V^{N-1/3} (2MU)^{3N-1/2}}{h^{3N-1/2}} \Omega_{3N}$$

δ functions have a dimension! \[\int \delta(x) dx = \int \delta[f(x)] \left| \frac{df}{dx} \right| dx = 1\]

We can compute (painfully) the number of states

and then get probabilities: “Microcanonical” methods
Sackur Tetrode Formula

We are now in position to compute the entropy

\[\sigma = \log g = \log \left[\frac{V^{N-1/3} (2MU)^{3N-1} \Omega_{3N}^{3/2}}{h^{3N-1}} \right] \]

Only problem: violently disagrees with experiment!

Solution: In quantum mechanics, particles are indistinguishable
We have over-counted the number of particles by \(N! \) (Gibbs)

Sackur Tetrode

\[g = \frac{1}{N!} \int \frac{h}{L} \delta \left(\sqrt{\sum_{\text{part } i \ j=1}^{N} \sum_{i}^{3} p_{ij}^2} - \sqrt{2MU} \right) \prod_{i} \frac{d^{3}x_{i}d^{3}p_{i}}{h^{3}} = \frac{V^{N-1/3} (2MU)^{3N-1} \Omega_{3N}^{3/2}}{N!h^{3N-1}} \]

For large \(N \) we can use the Stirling approximation both for integer and half integer

\[\log \left(\frac{m}{2} \right) \approx \frac{m}{2} \log \left(\frac{m}{2} \right) - \frac{m}{2} \]

and we get

\[\sigma(U,V,N) = \log g \xrightarrow{N \to \infty} N \log \left[\left(\frac{2\pi M}{h^2} \frac{2U}{3N} \right)^{3/2} \right] + N \left(\log \frac{V}{N} + 5 / 2 \right) \]

Writing \(n = \frac{N}{V}, n_Q = \left(\frac{2\pi M}{h^2} \frac{2U}{3N} \right)^{3/2} \) we get

\[\frac{S}{k_B} = N \left[\log \left(\frac{n_Q}{n} \right) + \frac{5}{2} \right] \]